Microalgae could provide a sustainable alternative for fish oil as a source for the omega-3 polyunsaturated fatty acids EPA and DHA. However, growing microalgae on a large scale is still more cost intensive than fish oil production, and outdoor productivities vary with reactor type, geographic location, climate conditions and microalgae species or strains. We examined the potential of the climate conditions in Bergen, western Norway for outdoor cultivation and EPA productivity of the diatom *P. tricornutum* in flat panel photobioreactors, and compared three different strains of different origin, to evaluate possible strain specific differences.

Cultivation conditions

- *P. tricornutum* strains Fito, M28 and B58 were grown in flat panel outdoor photobioreactors in Bergen, Norway (Fig. 1).
- Strains M28 and B58 were isolated from local fjords, strain Fito was obtained from Spain.
- Altogether 15 repeated batches were conducted during spring, summer and autumn 2016 (Fig. 2A).
- Dry weights and fatty acids were analyzed every 2. or 3. day.
- Weather was sunny in spring & autumn but rainy & cloudy during summer, with strong changes in day length (Fig. 2B).
- Irradiance and temperature fluctuated significantly (Fig. 2B&C).

Differences between seasons:

- Irradiance were higher in spring, resulting in higher biomass and EPA productivities than in summer & autumn.

Differences between strains:

- Strains possessed similar biomass productivities in spring and summer, but M28 had lower productivities in autumn.
- Strain Fito had higher EPA productivity than M28 and B58 in all seasons.

Productivities

- Irradiance
- Biomass production
- EPA production

Fatty acid profile

- PCA of the average seasonal fatty acids composition (%TFA) revealed strain-specific fatty acid profiles and only little influence of the season on the fatty acid composition (Fig 4 A).
- Including data from laboratory experiments revealed significantly different fatty acid profiles between indoor and outdoor grown cultures, and higher EPA content for the outdoor cultures.

Conclusion

- Despite the similar biomass productivities, the Spanish strain (Fito) revealed higher EPA productivities than the local strains M28 and B58, due to an increased EPA content of the biomass. However, this was only apparent with growth under outdoor conditions.
- Total fatty acid profiles were specific for each strain under outdoor conditions, and varied only slightly between the seasons, but changed significantly from indoor to outdoor conditions.

Abbreviations: DHA: Docosahexaenoic acid; DW: Dry weight; EPA: Eicosapentaenoic acid; FA: Fatty acids; PCA: Principal component analysis; TFA: total fatty acids

Acknowledgements: We thank Fitoplancton Marimo in Cadir, Spain, for providing their *Phaeodactylum tricornutum* strain, referred to as “Fito” in this study.