CO₂ concentration from air for microalgae cultivation

D.W.F. Brilman, Q. Yu
Sustainable Process Technology, Faculty of Science and Technology, University of Twente, The Netherlands

Introduction

CO₂ capture direct from air (DAC) is an enabling technology for sustainable algae cultivation, making it independent of (fossil based) CO₂ sources as flue gases.

Sorbent-based CO₂ capture:
- no solvent evaporation
- low specific heat
- fast sorption kinetics
- higher CO₂ capacity?
- Stability?

Production of ...
1. CO₂ enriched air (open PBRs)
2. Pure CO₂ (closed PBRs)

Sorbent Selection

Ideal sorbents for DAC: 1) High CO₂ capacity
2) High selectivity of CO₂ over H₂O

Principle:
- measure sample mass loss during heating in TGA and analyze composition of evolved gases using FTIR.

Sample size: ± 10 mg
- **Analysis time:** 30 min.

![Sorbent Selection Diagram]

Sorbent Characterization (1): Stability

To evaluate sorbent stability under different (desorption) conditions

Continuous treatment:

Cyclic operation:

![Sorbent Stability Diagram]

Evaluation

- Air purge: 1 bar; T[K] = 333; 1% CO₂ in product gas
- Desorption method:
 - Continuous sorbent in/out
 - T regeneration: 60°C
 - 1% CO₂ in product gas

![Evaluation Diagram]

Acknowledgements

Pilot plant for CO₂ enriched air production

![Pilot Plant Diagram]

... and much more work on...

- sorbent CO₂ capacities, sorption kinetics, water co-adsorption, sorbent circulation and fluidization, optimization of regeneration conditions, process evaluation, resulting in:

Figure 1: screening sorbents for direct air capture at ambient (lab) conditions for 15h

Figure 2: reproducibility tests of PEI600 (above) and Lewatit IER (below)

Figure 3: Sorbent stability in air, CO₂, N₂ and H₂O at elevated temperature.

Figure 4: Comparison of cyclic treatment and continuous treatment in air at 120 °C.

Figure 5: OpEx cost breakdown, based on energy needs and sorbent costs. No heat integration was included

Figure 6: CO₂ concentration at the outlet of desorber and desorption temperature